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The time history is examined of the motion of a compound multiphase drop formed 
by a vapour bubble completely covered by its liquid phase in another immiscible 
liquid. The compound drop is growing or collapsing owing to change of phase while 
it is translating under buoyant forces. In the limit of large surface-tension forces the 
interfaces are spherical. An exact analytical solution for the fluid-mechanical part 
of the problem can be obtained. The heat-transfer treatment of the problem, however, 
requires numerical solution if we are to include convective terms along with time 
dependence. The drag component induced by radial velocity contributes to the total 
drag on the bubble in eccentric configuration. This drag force is towards the centre 
of the drop in the case of growth and has an effect of restoring concentricity. However, 
it  is found that, in the case of growth, the compound drop, in general, cannot maintain 
its configuration of two non-intersecting eccentric spheres. On the other hand, in the 
case of collapse the bubble stays inside the drop if the collapse velocity is high enough. 
The complete analysis exhibits some interesting flow patterns relating to compound 
drops and bubbles. The time-dependent Nusselt number for a single bubble generally 
decreases with time but it may have a strong dependence on the compound-drop 
configuration, as well as the conductivities of the participating liquids. The radial 
convection opposes heat transfer but it has to compete with translatory convection, 
which is usually overwhelming in the case of growth. 

1. Introduction 
The study of the motion of spheres in fluids goes back as far as 1851 when Stokes 

first investigated the creeping motion of a solid sphere. Recently, there has been an 
interest in somewhat more complicated problems involving drops composed of two 
fluid spheres forming compound multiphase drops. We encounter such drops in 
processes such as direct-contact heat exchange, liquid-membrane technology and 
melting of ice particles. For the case of direct-contact heat exchange, one fluid is 
passed through another immiscible one at a different temperature. If a change of 
phase is allowed in the process one obtains compound drops involving three fluids. 

In our earlier work (Sadhalt% Oguz 1985) we investigated the motion of compound 
drops purely from a fluid-mechanics point of view. Also an extensive review of the 
fluid mechanics of compound drops and bubbles has been recently given by Johnson 
& Sadhal (1985). In the present study ,we focus our attention on compound drops 
undergoing growth or collapse due to change of phase in immiscible liquids. In general 
the motion consists of radial growth or collapse as well as translation. The 
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growth/collapse introduces some interesting fluid-mechanical as well as mathemat- 
ical aspects to the problem. The incorporation of change of phase requires the 
treatment of heat transfer along with the fluid mechanics in a coupled fashion. There 
is a great deal of interest in such drops in the field of direct-contact heat transfer 
because of the high efficiency achieved by eliminating the resistance between two 
phases. Sideman & Taitel(1964), Sideman & Hirsch (1965) and Isenberg & Sideman 
(1970) investigated the heat-transfer characteristics of evaporation and condensation 
of immiscible drops and bubbles from a heat-transfer point of view. Hayakawa & 
Shigeta (1974), Selecki & Gradon (1976), Tochitani, Mori & Komotori (1977a) and 
Tochitani et al. (1977b) have reported their work on the motion of two-phase droplets 
and on the fluid mechanics associated with it. In a recent investigation Lerner & 
Letan (1985) examined the condensation problem for cases when there is a thin 
condensate film. Jacobs & Major (1982) studied the collapse of compound drops 
taking into consideration the heat and mass transfer in the gas phase. Over the past 
few decades, there have been extensive investigations of two-fluid systems with 
change of phase. However much of this has been reviewed elsewhere (see e.g. Plesset 
& Prosperetti 1977; Prosperetti & Plesset 1978) and we shall not discuss it here. Our 
discussion is limited to three-fluid systems. 

Most of the published works in the area are either experimental or concerned with 
only the heat-transfer aspects of the problem. The flow field is often approximated 
and little rigorous discussion about it can be found in the literature. It is the intent 
of this paper to provide fundamental understanding of the fluid mechanics coupled 
with the heat transfer for a class of two-phase droplets with change of phase. Although 
the configuration we are dealing with is somewhat limited, it is a starting point for 
more complex problems. The present work covers the configuration of two fluid 
droplets with one phase completely engulfing the other one. This configuration can 
be treated analytically with the use of the bipolar coordinate system. This coordinate 
system was invented by Jeffery (1912) and has been used by several authors for 
problems in fluid mechanics as well as in heat transfer. Among the well-known 
publications in this regard are the Stokes flow solutions given by O’Neill(1964), Goren 
& O’Neill (1971), Rushton & Davies (1973, 1978), Haber, Hetsroni & Solan (1973) 
and Meyyappan, Wilcox & Subramanian (1981). A numerical solution in the bipolar 
coordinate system for heat transfer and fluid mechanics of melting ice particles was 
given by Rasmussen, Levizzani & Pruppacher (1982). This was the case of a solid 
ice sphere coated with a water film. The outer surface of the film had a specified 
sin &type approximation for the tangential velocity. Since the change of phase for 
this case was only from solid to liquid, the radial velocity effects were absent. 

In the next section we state the problem. For the fluid-mechanics part of the 
problem we consider creeping flow and derive its analytical solution. The heat transfer 
is coupled with the flow field and the energy equation is solved by finite-difference 
methods. 

2. Analysis 
2.1. Statement of the problem 

We consider a liquid drop in an immiscible unbounded fluid a t  uniform temperature. 
Inside the drop there is a bubble growing or collapsing owing to the slow evaporation 
or condensation of the drop (see figure 1). The vapour bubble lies entirely inside the 
drop and its growth or collapse is slow. Driven by buoyant forces as well as the viscous 
forces the bubble in general translates relative to the drop along their line of centres. 
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FIQIJRE 1.  Schematic of the flow past a compound multiphase drop. The uniform stream has a 
velocity U relative to the outer spherical interface which is fixed in the coordinate system. The 
inner spherical interface moves at a velocity V relative to the outer interface. In addition the 
inner and the outer interfaces have a radial velocity V p )  and V$*) respectively. 

We neglect the inertial terms and consider only Stokes flow. Since the bubble size 
changes slowly the problem is quasi-steady in terms of the fluid mechanics. Under 
the Stokes flow approximation we may consider the translational velocities as well 
as the flow field to be instantaneous, i.e. viscous diffusion does not participate in the 
time dependence. We choose to denote the velocity of the compound drop as U and 
the relative velocity of the bubble with respect to the drop as V .  The translational 
velocities U and V are unknown and to  be determined from the total force balance 
equations. We refer to the continuous phase as fluid 2, the drop as fluid 3 and the 
vapour bubble as fluid 1. We also assume that surface tension at both the interfaces 
is large enough to preserve the sphericity of the bubble and the drop. The interfaces 
are considered to be free of surfactants and the interfacial tension is therefore 
uniform. 

The governing equations are as follows : 
continuity : 

momentum : 

V - U ,  = 0 (i = 2,3),  

Vp,  = prV2u, (i = 2 , 3  (no sum)), 

where i = 2 , 3  is used to denote the quantities in phases 2 and 3, respectively; p ,  are 
the pressures,p, the viscosities andut the velocities. The boundarylinterface conditions 
are : 
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(i)  uniform stream U at infinity; 
(ii) prescribed normal velocity Vp)  at the outer interface; 
(iii) continuity of tangential velocity at  the outer interface ; 
(iv) continuity of shear stress at  the outer interface; 
(v) prescribed normal velocity V p )  at the inner interface; 

(vi) zero shear stress at the inner interface. 
Here the normal velocity V p )  is prescribed as an unknown constant which will be 
determined by the growth/collapse rate given by the heat-transfer rate. The normal 
velocity Vp)  is related to Vg" by a volume constraint on phase 3. 

For the heat-transfer part we consider the conduction/convection problem de- 
scribed below. Its solution will give the radial velocity Vl1) which is necessary to fully 
define the flow field. We also note that the heat-transfer is coupled to the flow through 
the convective terms. The governing equations for this problem are as follows : 

energy balance 

= k z V 2 q  (i = 2 , 3  (no sum)), 

where (c,p), is the heat capacity, T, the temperature, ki the conductivity of the 
respective fluids and t is the time. 

The boundary/interface conditions are : 
(i) uniform temperature T, at infinity; 

(ii) continuity of temperature at the outer interface; 
(iii) continuity of heat flow at the outer interface; 
(vi) constant temperature T, at the inner interface (here T, is the saturation or 

For brevity, these equations are written in mathematical notation only after the 
introduction of the stream functions for the velocity field. 

We further make the assumption of small capillary number. A t  both the interfaces 
the surface tension dominates the viscous forces. This implies that, a t  any time, the 
bubble and the drop preserve their spherical shape. Therefore the size change of 
the bubble due to the phase change can only create a uniform normal velocity at  
the bubbledrop interface. An energy balance on the inner sphere surface gives the 
relation between the normal velocity V p )  a.nd the temperature field as 

equilibrium temperature of the vapour (fluid 3)). 

4 P  

where A is the bubble surface area, p1 is the density of the bubble, L, is the latent 
heat of vaporization of the drop and n13 is the outward unit vector a t  the inner 
interface. 

Since we are considering incompressible fluids, the relation between the normal 
velocities V p )  and is obtained from the conservation of mass equation. Neglecting 
evaporation losses or condensation gains of the liquid phase, we write 

VL1) R;3 = VL2) Ri3, (2) 

where we make use of the small-capillary-number approximation and consider the 
normal velocity V p )  at the 2-3 interface to be uniform. With the above boundary 
and interface conditions the problem is fully defined. An analytical solution to the 
fluid-mechanics part can be found. As far as the heat transfer is concerned, a fully 
analytical solution does not seem possible even for the case of pure conduction. But 
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a semi-analytical solution can be found. A fully numerical solution is required when 
the convective terms are included. Since the problem involves two eccentric 
non-intersecting spheres the bipolar coordinate system is a natural choice. 

2.2. The bipolar coordinate system 
Introduced by Jeffery (1912), the bipolar coordinate system ( 6 , ~ )  is related to 
cylindrical coordinate system as follows : 

where c is the half-distance between the points identified by E++ 00 and E+- 00 and 
constant values of identify non-intersecting eccentric spheres. The 1-3 interface is 
represented by 5 = El, and the 2-3 interface by 6 = E,,. The radii of the interfaces 

(4) 
are given by C C 

’ R23 = sinhe R,, = ~ 

sinh El, 
The distance between the centres of the eccentric spheres is 

where R = R13/R2,. We can express El, and f,, in terms of non-dimensional geometric 
parameters R and (d/R2,)  as follows : 

1 9  

1 - R2 - (d/R23)2 

[ 2 ( d / R 2 3 ) R  
El, = c0sh-l 

I- 1 - R2 + (d/R23)2 

[ 2 ( d / R 2 3 )  
E2, = cosh-’ (7) 

All possible cases may be covered by changing the values of R and (d/R2,)  or El, and 
E,,. The eccentricity is defined as a number between 0 and 1 instead of (d/R2,)  and 
it is given by d 

(8) € =  
‘23-  R13 * 

Now we cast the problem in terms of Stokes stream functions. In the bipolar 
coordinate system velocities are related to stream functions in the following form : 

With the above representation the continuity equations are identically satisfied. 
Momentum equations can be satisfied by 

L?,($(*)) = 0, (10) 

where L-, is the axisymmetric Stokes operator in the bipolar coordinate system. The 
boundary/interface conditions may now be expressed in terms of stream functions as 
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= 0. 
where 

sin 7 

Next, we express the heat-transfer part of the problem in the bipolar coordinate 
system. Since numerical solution necessitates non-dimensionalization the tempera- 
tures are expressed as follows: 

The energy equations and the boundary /interface conditions are 

V2et = Pe,(cosh(-cosy) 

where 

The PBclet numbers Pe, and the dimensionless time t* are defined as 

t* = -, t G 3  (23) 
Kef 

where superscript 0 denotes the initial conditions and Vref is a reference velocity that 
will be defined later. The boundary and interface conditions are 

(24) 8 2 1 5 ,  +I = - 1’ 

@zIf=fo3 @&=tZa> (25) 
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The relation between the radial velocity V$l) and the dimensionless temperature 
distribution 8, is given by 

2.3. Solution 
2.3.1. Fluid mechanics 

following form : 

Here CAl (cos 7) is the Gegenbauer polynomial of order (n+ 1) and degree -?j and 

The general solution to Lt1($@)) = 0 is given by Stimson & Jeffery (1926) in the 

$(')(E, 7) = (cash E- COS q)-i  S;)(f) C d l  (COS 7). (29) 

g;)(E) = A:(#) cosh (n-2)  E+B:(l) sinh (n-a) 6 
+C:(i)cosh(n+t)(+D,*(t)sinh(n+t)c, (30) 

where A:(*), B,*cf), D:(#) represent integration constants. 
Stimson & Jeffery did not specify the lower limit of the summation in the general 

series solution. Many other investigators have assumed it to be zero. However, we 
checked the validity of series and found after some tedious algebra that, in general, 
it should start from - 1, especially if there is growth or collapse. But a close 
examination reveals that the two leading terms ( n  = - 1,O) each introduce a line 
source along the z-axis in the solution, in that 

%) ll-O,n * 0. 

Nevertheless, a suitable relationship between them eliminates the problem and leaves 
only a point source as required for a growing bubble. The proper general solution can 
be written as m 

$( ' ) (E,q)  = (coshf;-cosr)-i S;)(c)C++l ( c o s ~ ) ,  (32) 
n--1 

where 

= A*(I)[cosh (-gf;)+3coshfE]+B*(t)[-sinh (-$[)-3sinh?jE], 

Ei(c)  = A*(i)[coshiE+3cosh ( -?jc)]-B*(i)[sinhg6+3sinh (-?jE)], 
and S;)(E) for n = 1,2, . . . is given by (30). Here A*(i) and are integration 
constants. 

A t  this point it should be recognized that the complete solution should be a linear 
combination of solutions proportional to the velocities U ,  V and V$l) so that the 
stream functions $(c) can be broken into three parts as follows: 

By letting the viscosity of fluid 1 go to zero in the three-fluid solution given by Sadhal 
& Oguz (1985), $v and $$) can be obtained. For the present case we take advantage 
of the simplifications resulting from the zero-shear-stress condition at 5 = El,. 
Consequently, the integration constants are not as complex as the three-fluid solution 
and are given in the Appendices A and B. For the solution involving radial velocities 
we first redefine the interface conditions (12) and (16) by integrating with respect to 
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COST. This is done to avoid derivatives of @(() in the boundary conditions. The 

where A’ and B are integration constants. Since these constants resulted from the 
integration of the boundary condition, their values can be obtained by satisfying 
these conditions at  the suitable points (7 = 0, 7c) on each boundary. As a result we 

For six unknowns we have six equations and an additional boundary condition 
for the proper behaviour of @(,) as i$+-00. This condition is met by having 

Here we can confirm that V p )  and V p )  cannot be arbitrary. By solving the above 
= -B*(2). 

equations with V p )  = R2VP) the constants are found to be 

A’ = cosh61, B’ = ‘Osh 623 

sinh2 El, ’ sinh2 tI3 ’ 

Now we apply the usual procedure of satisfying boundary and interface conditions 
by expressing them in terms of series and matching them term by term. The boundary 
and interface conditions become 
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+ ( n  - t )  ( n  +%If (6)  d2f(6) 
where 

Tt{f(6)9 V7 0 = 

The above conditions should be satisfied for n = - 1 ,  0, 1,2 ,  . . . . But we have already 
calculated the integration constants for the first two terms. A little algebra shows 
that previously found constants actually satisfy all the above boundary/interface 
conditions for n = - 1 ,  0. Now we need to find the rest of the integration constants. 
We choose following special forms for E’!!)(E) ( n  2 1 )  which satisfy (42), (43) and (46) : 

-n ~ t 2 ) ( 6 )  = A [e(n+) (5-5ea)-e(n+) (5-5d]+ B e(n-+) ( 5 - S d ,  (48) 

where 

We can obtain Cn by satisfying (47) and the use of (44) and (45) gives An  and Dn. 
The solution obtained from the above procedure is added to the solutions 

proportional to U and V. A t  this point we have to specify U ,  V and Vil) to have a 
complete solution. The translational velocities U and V will be obtained from the 
viscous force balance equations whereas the radial bubble velocity Vil) requires the 
solution of the heat-transfer problem. 

2.3.2. Heat transfer 

Since we include convective terms in the problem it is obvious that a fully 
analytical solution is not possible. Even in the case of pure conduction we could not 
find an exact analytical solution because of the difficulty in satisfying the continuity 
of heat flow condition at the 2-3 interface. We, nevertheless, attack the conduction 
problem so as to use the solution for comparison with the convection diffusion 
problem. 

In the limiting case of small PBclet number the problem reduces to the solution of 
Laplace’s equation in the bipolar coordinate system. The general solution is given by 

co 
8, = (2 cosht-2 cosy)+ C X(,z)(f)Pn(cosy), 

Xt)(<) = a:(,) cosh ( n + i )  [+b:( , )  sinh ( n + i )  f .  

(50) 
n-0 

where Pn(cos y) is the Legendre polynomial of order n and 

(51) 
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FIGURE 2. Variation of Nusselt number with eccentricity for conductivity ratio: (a )  k, /k ,  = 0.2, 
( b )  5; radius ratio R = 0.5: -, eccentric; --- concentric. 

We select following special forms of 8, which satisfy (24), (25), (27) 
co 

8 , = - 1 + + ( 2 c o ~ h ~ - 2 ~ 0 ~ ~ ) ?  z XC,Z)(~)P’(COS~) 
n-o 

and 
W 

8, = (2 cosht-2 cosq)? z Xg)(t)Pn(cosl;l). 
n-o 

(52) 

(53) 

With the use of the identity 

and 

The continuity of heat flow condition (26) cannot be satisfied term by term. To 
find the constants an we have to use numerical means. A little algebra leads to the 
following equation : 

{(2-1) sinh623-(cosht;,,-cos7)(2n+1) 
n-0 
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FIGURE 3. Streamlines for a uniform velocity of U = 1 ,  a radial velocity of V p )  = 0.1 and a 
relative velocity of V = 0, with R = 0.5, E = 0.5 and pJp2 = 0.8. 

The above condition must be met for all a,. We choose to use the collocation 
method to calculate the a,. This method was found to be reasonably easy to apply 
to this problem. The equation is written at the roots of the Legendre polynomial 
Pn(cos 7) giving N linear equations in the a,. The number N denotes the highest order 
of PN used in the series to approximate the temperature field. The value of N depends 
on the eccentricity and the conductivity ratio ( k 3 / k , )  for the desired accuracy. For 
our calculations, we require 10 < N < 40. 

Using (28) in terms of coefficients a, we can calculate the total heat flow which 
yields the normal velocity V p ) ,  

The total heat flow is 

which may be non-dimensionalized by defining the Nusselt number N u  as follows 

For the pure-conduction case, Nu is plotted as a function of eccentricity in figure 
2(a, b). For case (a),  with k3/k2  = 0.2 < 1, we see an increase in Nu with increasing 
eccentricity. This is because the thinner region of the film plays the dominant role 
in determining the resistance. For case (b) we have k 3 / k ,  = 5 > 1. Here the Nusselt 
number decreases gently with increasing eccentricity. The effect of eccentricity is 
rather weak because of the high conductivity in phase 3. 

The finite-difference formulation of the problem is not as straightforward, as one 
might think, because of the complexity and non uniformity of the grid in a bipolar 
coordinate system. The formulation must be suitable for all possible cases. For this 
reason we used the spherical coordinate system for region 2 and the bipolar coordinate 
system for region 3. Since the matching is done at the 2-3 interface the origin for 
the spherical system is taken at the centre of the outer sphere. To obtain uniform 
grid spacing in the 7-direction, we first take a tavg which corresponds to an average 
radius Ravg : 

C 
=!dR23+  R13)' 

- 
Ravg - sinh f;,,, 
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Equally spaced points on the arc identified by c = fvg are taken to obtain discrete 
7-values which are then matched with discrete 8-values a t  the 2-3 interface. We used 
equally spaced points in the 6- and the radial directions. 

Another major difficulty is to take into account the continuously changing 
geometry. It is very difficult to  estimate the time derivative because the configuration 
of the grid is not the same as it is at the previous time step. For this reason we 
formulate the problem in a special way. Instead of using grids fixed in space we used 
infinitesimal volumes moving due to the changing configuration. For each volume 
cell we write the integral form of the heat equation which involves the time derivative 
of the heat capacity of the cell and the net heat flow across the cell surfaces. At a given 
time the total heat flow across a surface is given by the sum of the conductive and 
convective terms. The convective velocities at the surface are obtained by simply 
adding the velocity of the flow field to  the velocity of the cell surface induced by the 
moving grid. 

I n  the case of growth, the initial condition is a simple step decrease in temperature 
a t  the surface of the bubble and a uniform temperature distribution for the liquid 
drop and the bulk phase. The surface temperature here corresponds to the equilibrium 
temperature a t  the liquid pressure. I n  the case of collapse, however, we impose a 
linear temperature distribution in the thin liquid film and a uniform temperature for 
the bulk phase. This represents an approximation to  the actual temperature 
distribution a t  the time when the condensate has formed a thin film. The time span 
for this initial condensation process is sufficiently small that  any error caused by the 
approximation does not seriously affect the time history. Also, from the growth 
histories we see that for a low-conductivity film, in the final stages of bubble growth 
it has a radially linear profile. This is partly because, for a thin film, convective 
circulation is almost absent. This point has been noted earlier by Rushton & Davies 
(1973) and Sadhal & Oguz (1985). 

There is no particular difficulty in satisfying the boundary and interface conditions. 
The continuity conditions a t  the 2-3 interface become a simple energy balance 
equation (similar to the one used in the bulk phase) with a discontinuity in 
conductivity. 

3. Flow field 
For this problem plotting the streamlines is more than just an observation of flow 

patterns: we can actually get crucial information about the behaviour of the system. 
We did not put arrows on the streamlines because the flow can be visualized in two 
ways. For instance one way of looking a t  figure 3 is to imagine the collapse of the 
bubble. In  this case the uniform stream should be from right to  left. On the other 
hand we can also consider a growth; then the uniform stream should be from left 
to right. By similar reasoning we can also consider the cases where the eccentric 
position of the inner sphere is on the right-hand side in the drop. For instance, if we 
had to reverse figure 3 with respect to  the centre we would get streamlines covering 
the case of a collapse with a uniform stream from left to right. The above reasoning 
is valid owing to  the generality of the solution. I n  other words, for cases in which 
the inner sphere is off-centre towards the positive z-direction (i.e. both can be spheres 
identified by negative values of 5) we do not have to solve a new problem. The 
calculation of drag forces in 34 also supports this argument. 

I n  figure 4 streamlines showing various cases of collapse have been plotted. The 
effect of the relative velocity V is very clear from the plots. For the case V = 0.2 and 
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FIQURE 4. The effect of the relative velocity V for the case U = 1 ,  V p )  = 0.2 with R = 0.5, E = 0.5 
and ,u3/,u2 = 0.8. (a) V = 0.2, ( b )  0, ( e )  -0.2; and (d) V = -0.2 and V p )  = -0.2. 
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(4 

(C) 

FIGURE 5. Streamlines for the caae of a bubble with its centre to the right of the outer sphere 
centre: U = l ,  V ~ ~ = - 0 . 1 w i t h R = 0 . 5 , s = 0 . 5 a n d p s / p 2 = 0 . 5 . ( a )  V = O . l , ( b ) O , ( c )  -0.1. 

V p )  = 0.2 the velocity on the left stagnation point of the bubble is zero and no strong 
internal circulation is observed. Whereas in the case when V = 0 a cell appears on 
the right of the bubble. It becomes larger when V = -0.2 making the normal velocity 
on the right stagnation point zero. For all of the above cases the location of the vortex 
did not change significantly. For the same configuration in the case Vil) = -0.2 and 
V = 0.2 we get figure 4(d). Although no internal circulation is observed, it is clear from 
the flow patterns that growth shifts the vortex from right to left in the case of a 
uniform stream in the opposite direction. 

Figure 5 shows the cases in which the internal circulation is in the thinner region 
of the shell. Again from the streamlines for various values of V it is not difficult to 
conclude that it is the direction of the radial motion of the interface that controls 
the position of the cell. Finally figure 6 shows that as the eccentricity decreases, i t  
gives more room for internal circulation on the thinner side of the shell. In the next 
section we derive the expressions for drag on each sphere and the force balance 
equations involving the unknown velocities U and V. 
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FIGURE 6. The effect of changing eccentricity for the case U = 1, V = -0.2, V$" = -0.2, 
R = 0.5 and ,u3/,u2 = 2.0. (a) B = 0.5, ( b )  0.1. 

4. Drag and translational velocities 
The above solution is not complete unless we calculate the drag on each sphere. 

Stimson & Jeffery (1926) derived the formula for viscous drag in a bipolar coordinate 
system. But this formula is not valid if the series begins with n = - 1. After some 
lengthy algebra and by using the Symbolic Manipulator Program (SMP) we fmally 
arrived a t  the following general formula for viscous drag on each sphere identified 
by positive values of 6: 

00 a) = -- 4A*(f) -4B*(f) + (AX(<) +B*(f) +C:(f) +D*(f)  , (58) 
2d2=pf C [ n-1 n 11 

where Fg) is the viscous force on the outer sphere and Fg) that on the inner one. 
Since we neglect inertial terms, only viscous and buoyant forces will be considered 

in the instantaneous force balance equations in the z-direction. The total viscous force 
on each sphere has three parts. The first one is induced by the velocity U of the drop 
and it is proportional to U .  The relative velocity V of the bubble with respect to the 
drop causes the second part of the viscous force and it is proportional to V .  As long 
as there is a non-zero eccentricity, expansion of the bubble contributes to the viscous 
force in the z-direction. So the third part of viscous force is proportional to V p ) .  With 
the above considerations instantaneous force balance equations can be written as 
follows : 

outer sphere: 

%[Pa R i 3 - p P 3 ( R i 9 - R : 3 ) 1 g  = " 2 p 2  u R 2 3 + b 2 p 2  v R 2 3 + y 2 p 2  '?) R 2 3 ;  (59) 
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inner sphere: 
$ P3 R:3 = a3 p2 uR23 P 3  p2 vR23 + 7 3  p2 'L1) R23 ; (60) 

where a#, pi and yi represent non-dimensional viscous drag components corresponding 
to U ,  V and V p ) ,  respectively. The expressions for these components are given in the 
Appendices. The densities of the respective phases are given by pi and the 
gravitational acceleration by g. 

Before we solve the above system for U and V it  is convenient to put the equations 
in non-dimensional form. Since the radius of the drop changes we use the initial radius 
of the drop denoted by %3 as a lengthscale. Then the force balance equations become : 

(61) 

(62) 

u* = u/v refa (63) 

V* = V/K',,,, (64) 

V?'* = V$l)/Kef, (65) 

Kef = ~2 s R ~ ) ~ / P ~ .  (66) 

outer sphere: 

$[i-p(1-R3)] = [aZ U*+/?, V*+y2  Vp)*] (R!3/R23)23 

$pR3 = [a3U*+p3 V*+y3 Vp)*]  (@&/&3)2, 

inner sphere : 

where p = p3/p2 and a reference velocity Ker is defined such that 

The solution of the above system of linear equations gives the instantaneous 
velocities U and V .  

The dimensionless drag coefficients at, /It and yi are plotted in figures 7 and 8 for 
the outer and inner spheres respectively. In  these plots a positive drag coefficient 
represents a force in the negative z-direction. Here the sign convention for the unit 
velocities is as follows : translational velocities are in the direction of negative z-axis 
and radial velocities are in the direction towards the centre. It can be noted that 
increasing viscosity and/or radius ratio always increases the magnitude of these 
Coefficients. The effect of increasing the ratio is that the liquid film in phase 3 becomes 
thinner, thereby increasing the resistance to its internal circulation. This leads to an 
increased drag. In  the range covered by the graphs the coefficients did not change 
sign. A careful observation shows that the coefficients yi (induced by radial velocity) 
are odd functions of the eccentricity whereas the coefficients a, and b, (induced by 
translational velocities) are even functions. Here we note that an outward radial 
velocity of the inner interface creates a force towards the centre of the outer sphere. 
This is probably the result of an increased pressure in the thinner region of the film 
which may cause the inner sphere to move towards the centre of the outer sphere. 
By the same token an inward radial velocity forces the inner sphere away from the 
centre. However, this does not mean that outward radial velocity stabilizes the 
configuration. From a purely geometrical argument, eccentricity increases with 
bubble growth in the absence of relative translational motion between the bubble and 
the drop. 

A t  a given time and configuration the instantaneous velocity calculation involves 
an iterative process for radial velocity. The radial velocity given by the solution is 
then substituted into the force balance equations to calculate the translational 
velocities U* and V*. Having found Vp)*,  U* and V* the flow field is fully defined. 
We further solve the convection-conduction equation by using a finite-difference 
formulation. From the solution the total heat flow into the bubble can be calculated. 
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FIQURE 8. The dimensionless drag components acting on the inner sphere as a function of 
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In  terms of the Jakob number, 

JJ3 

and Nusselt number Nu the normal velocity Vp)* can be written as 

(67) 

The radial velocity found from the finite-difference solution is then substituted into 
the force balance equations to close the iteration cycle. Convergence is reached when 
changes in velocities are small enough. Since at any given time there is a non-zero 
radial velocity and hence a continuously changing geometry we cannot talk about 
the stability of any instantaneous equilibrium configuration. What we can do 
however is to carry out a time-history analysis. Given an initial configuration and 
initial parameters the time history of the compound drop can be studied. This is done 
in the next section. 

5. Time histories 
The solution obtained above can be used to investigate the motion of the bubble 

inside the drop. A t  a given time the velocities are known and the flow is fully 
developed according to the quasi-steady assumption. To calculate the configuration 
after an infinitesimal increment of time we simply have to integrate the velocities 
with respect to time. By repeating this procedure we can get the time history of the 
compound drop. We stop the process either when the bubble gets very close to the 
outer interface or in the case of collapse when the radius ratio is sufficiently small. 

As mentioned before we are using the initial radius of the drop as a length-scale 
because it undergoes the least change. The procedure to calculate the configuration 
involves three dimensionless lengths RF3, RZ3, D* to fully define the problem. Here 
R:3 = R 1 3 / q 3 ,  RZ3 = R Z 3 / q 3 ,  D* = &/Rr/3 and d is the distance of the bubble centre 
from the drop centre. If Ri;)*, R$$* and Dn)* represent dimensionless lengths at time 
n then R$;+')*, R(n+l)* 13 and Dn+l)* are given by 

where At* is a dimensionless increment of time and the dimensionless time t* is defined 
as 

Here Euler's formula of numerical integration was used for simplicity. Several runs 
showed no drastic change in velocities except at the final stage of the collapse of the 
bubble. We have obtained growth and collapse histories for various cases. The results 
are discussed below. 

5.1. Growth histories 
The present analysis deals with cases in which the thermodynamic forces favour the 
nucleation of a vapour bubble within the drop as opposed to the liquid-liquid 
interface. The low-Reynolds-number assumption limits the results to situations with 
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FIQURE 9. Illustration of the evaporation of the bubble inside the drop. The sequences correspond 
to the configuration of the compound drop at the time t* given under each one. In this case, 
ps/p2 = 2.0, ps/p2 = 0.8, k , / k ,  = 0.2, u3/u2 = 0.2, Pe, = 0 and Ja(p,/p,)/Pe, = 0.005. 

small AT. In such cases nucleation may be initiated for experimental purposes with 
very dilute particulate additives. 

Previous models and experimental observations of an evaporating two-phase drop 
suggest the configuration of a bubble partially covered by its liquid phase. This has 
been observed for both the high- and the low-Reynolds-number cases. The current 
analysis has in fact showed this to be the tendency of such compound drops even 
when the bubble nucleates within the drop. From the results we conclude that most 
of the time the bubble reaches the outer interface favouring a partially covered bubble 
configuration. Note that the growth of the bubble actually creates a force towards 
the centre of the drop. But the purely geometrical effect of radial motion of the 
interface is to increase the eccentricity. Between these two competing mechanisms 
the radial motion is usually dominant. In addition to the radial growth of the bubble, 
the translation of the drop creates a force in the upward direction regardless of 
eccentricity. For this reason the initial position of the bubble inside the drop is very 
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FIGURE 10. The time history for the case p 3 / p z  = 2.0, p3/pz = 0.8, k 3 / k ,  = 0.2, u3/a2 = 0.2, 
Pe, = 8.0 and Ju(pl/p3)/Pe, = 0.005. 

important for the subsequent behaviour of the configuration. If we begin with a 
configuration of a bubble close to the top, then after a few time steps the bubble 
reaches the outer interface. On the other hand, if we place the bubble at the bottom 
we get the time histories described in figures 9 and 10 which show steady migration 
from bottom to top. Similar sequences are obtained when we cut the evaporation rate 
by half. But for this case the bubble stays longer inside the drop. It should be noted 
that in general the initial bubble position is governed by the thermodynamics and 
the fluid dynamics prior to nucleation. This prior history has not been taken into 
consideration in the present analysis. Instead, the histories following a given initial 
configuration have been obtained. 

The dimensionless velocities of the above cases are plotted as functions of time in 
figure 1 1 .  A sharp decrease in radial velocity is observed at the beginning of the 
evaporation. The continuous increase of the translational velocity U is due to the 
changing buoyant forces. 

The relative velocity V drops considerably before the bubble touches the outer 
interface 2-3. This is because the drag coefficients get larger in magnitude as the 
eccentricity increases. 

Nusselt number is plotted as a function of time in figure 12(a,b)  for growing 

5-2 
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FIGURE 12. (a) Nusselt number as a function of time for initial Pe, = 0; (b )  Nusselt number as a 
function of time for initial Pe, = 8, here Nu, is the conduction part of the solution. (c) PBclet number 
aa a function of time for case (b) .  (d) Eccentricity as a function of time for case (a) (Pez = 0). 
(e) Eccentricity as a function of time for case ( b )  (Pe, = 8). 

bubbles. For the first case (a) the PQclet number is taken to be zero. For this case 
a monotonic increase is observed for the Nusselt number. This is due to the decreasing 
thickness of the liquid film resulting from growth. This observation is particularly 
true if the film has a much lower conductivity than the continuous phase. For the 
second case (figure 12b), we include convective terms with an initial PQclet number 
of 8. On the same graph the pure-conduction part of the Nusselt number Nu, has 
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FIGURE 13. The time history for the case pa/pz = 2.0, p3/p2 = 0.8, kJk, = 0.2, a8/a2 = 0.2, 
Pe, = 0 and Ja(pl/p3)/Pe, = -0.01. 

been plotted. Here the two solutions at each time step correspond to identical 
geometrical configurations. Figure 12 (a) ,  however, relates to a different sequence of 
configurations because in that case the time history is taken to be governed by pure 
conduction. In figure 12 ( c )  the PBclet number is plotted as a function of time for the 
case in 12(b) .  Here we see a monotonic increase in PBclet number with time, largely 
due to the increased buoyancy. In figures 12 ( d ,  e )  the eccentricities are plotted as 
a function of time for the cases corresponding to figures 12(a,  b ) ,  respectively. The 
eccentricity is a measure of the distance between the centres of the inner and the outer 
spheres as defined in (8). It is inferred from this plot that a steady motion of the 
bubble relative to the drop takes place for moderate eccentricities. We discuss the 
cases of bubble collapse next. 

5.2.  Collapse histories 

Figures 13 and 14 show the sequences of bubble collapse starting with zero 
eccentricity. In this case, when the heat transfer rate is high enough the bubble always 
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FIGURE 14. The time history for the case p3/ps = 2.0, ps/p2 = 0.8, k, /k ,  = 0.2, a3/az = 0.2, 
Pe, = 40 and Ja(p,/p,)/Pe, = -0.01. 

stays inside the drop until it finally disappears. Note that the radial velocity creates 
a force out of the centre of the drop. But the relative translational velocity is not 
high enough to lead to a partially covered bubble because of rapid shrinkage. 

We examine the velocities in figure 15. The radial velocity is, of course, just the 
reverse of the previous case. The velocity of the drop and the relative velocity of the 
bubble decrease as the bubble gets smaller. This is simply due to the changes in 
buoyant forces. In figure 16 (a, b) the Nusselt number is plotted as a function of time. 
As in figure 12, the first case (a) represents Pe, = 0 and in the second one (figure 16b) 
the initial P6clet number is 40. For the second case we also give the conduction part 
of the Nusselt number for comparison purposes. As in the case of evaporation, the 
radial convective terms work against conduction and decrease Nu. In figure 16(c) the 
PQclet number is given as a function of time for the case in figure 16 (a). It decreases 
monotonically with time as the buoyancy-driven translational velocity decreases 
with collapse. The variation of eccentricity with time for the cases in figures 16 (a ,  b) 
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is given in figures 16(d ,  e) ,  respectively. For both cases the eccentricity increases 
from zero, reaches a maximum, and then starts to decrease. 

6. Conclusion 
The present analysis is restricted to bubbles completely covered by their liquid 

phase. This situation can be a good model for the initial stages of the evaporation 
of a drop or the final stages of the condensation of a bubble in an immiscible fluid. 
The assumption of low Reynolds and capillary numbers limits the validity to small 
compound drops. For the case in which the continuous phase is a liquid of high 

FIGURE 16. (a )  Nusselt number as a function of time for initial Pe, = 0; (6) Nusselt number as a 
function of time for initial Pe, = 40, here Nu, is the conduction part of the solution. (c) PBclet 
number as a function of time for case (b).  (d) Eccentricity as a function of time for case (a) (Pe2 = 0). 
( e )  Eccentricity as a function of time for case (b )  (Pez = 40). 
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viscosity (such as castor oil at 40" C) we may allow the inner-sphere radius to  be as 
large as 1 mm in diameter. The outer sphere could be much larger under the 
low-Reynolds-number approximation because the buoyant force is dominated by 
the size of the gaseous inner sphere. The present work helps us understand the 
mechanisms that control the configuration of compound drops in the case of change 
of phase. Numerical and fluid-mechanical limitations restricted the problem to 
moderate radius ratios. Eccentricity is kept within a reasonable range for compu- 
tational purposes. 

I n  the case of growth our analysis shows that, in general, the bubble is driven out 
of the drop owing to  the buoyant forces. The viscous force generated by the radial 
motion tends to restore concentricity but it is not large enough to hold the bubble 
inside. The competing buoyant force is generally stronger in the case of growth. Also, 
the thinning of the liquid film around the growing bubble does not allow the film to 
sustain itself. As a result the vapour bubble may be left only partially surrounded 
by its liquid. The growth history depends very much on the initial position of the 
nucleating vapour bubble. The analysis for establishing the initial configuration is 
somewhat more involved and was not carried out in the present development. 

I n  the case of bubble collapse, however, we see that the tendency of the bubble 
is to  stay inside its liquid phase. This is primarily because the thinning, as in the case 
of growth, does not take place for collapse. Furthermore the buoyant force gets 
weaker as the bubble becomes smaller. 

This analysis has exposed some fundamental aspects of the growth and collapse 
of multiphase bubbles. The time histories of the bubble dynamics tell us about the 
detailed behaviour of such multiphase systems and the effect of various physical 
parameters on important quantities such as Nusselt number and the drag force. Our 
future efforts will focus on other domains of multiphase drops and bubbles such as 
the case of a vapour bubble partially covered by its own liquid. 

The authors are very grateful for the support of this research from NSF Presidential 
Young Investigator Award Fund (CBT 83-51432), TRW Systems, Inc. and the 
Ralph M. Parsons Foundation. 

Appendix A 
The flow field induced by a uniform stream is calculated in this Appendix. The 

stream functions +g) and +g) are given by 

The following special forms are chosen for S?")(E) : 
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The above forms satisfy zero-stream-function conditions at both interfaces and the 
zero-shear-stress condition at  the inner interface. By applying the rest of the interface 
and boundary conditions the integration constants A: and 0," are obtained : 

where 

A&=-&+--,  2/43 
P2 

n-!j n+f  
tanh(n-$)d-tanh(n+$)d ' 

Fn = 

= 513-523. 

In  terms of the above constants the drag coefficients a2 and a3 are given by 

a2 = - 2 4 2  sinh E2, S& (A 6) 

and 

where 

and 

a3 = - 2 4 2  ~inh[, ,S,V,~, 
P2 

Appendix B 

Related stream functions $F) and $1") are given by 
The flow field created by the relative motion of the inner sphere is calculated here. 

W 

$f?(t,~) = (cosh[-cosT)-i X @([)C;;'o, (COST). 

3 7. 2) (5) = Ai[e("f) (6-503) -e(n+) ( E - 5 4 ,  

(B 1 )  
a--1 

The following special forms are selected for this case: 

(B2) 

so that zero stream function at the outer interface is satisfied. The integration 
constants are given by 

(B 4) 
e-(n-$fi3 e-(n+f) 513 

- 
n + i  
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and 

where 

and 
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CL = i[(n-+) EL+7Y3], 

n-+ 

sinh(n-+)A 
AF3 = - EE-G,CK 

n-?j n + t  
sinh (n - 4) A - sinh (n + t )  A 

G, = 

The drag coefficients p2 and p3 are then given by 

pz = - 2 4 2  sinhf,,SF3 

and p3 = - 2 4 2  sinh(,,SY3&, 
P2 

where 

and 

Appendix C 

We give B, and En in the main text following (49). The rest of the constants are 
The integration constants of the stream functions $g!are A,, B,, C,, D, and En. 

C, = t[(n-+) En+7 13 ] (C 1) 

D =&? 
Af3' 

(723+(n-i)Bn), 

and 
n-t n-t A =-  

23 (sinh(n-+) A En-tanh(n-+)A 
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The drag coefficients y2 and y3 are given as 

y2 = - 2 4 2  sinh &3 S,v,' 

and 

and 
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